Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Michal Picka, ${ }^{\text {a }}$ Ivana Císařová, ${ }^{\text {b }}$ Jaromír Vinklárek ${ }^{\text {a }}$ and Milan Erben ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Nám. Čs. legií 565, Pardubice 532 10, Czech Republic, and ${ }^{\mathbf{b}}$ Department of Inorganic Chemistry, Charles University, Hlavova 2030, Prague 128 40, Czech Republic

Correspondence e-mail: milan.erben@upce.cz

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.030$
$w R$ factor $=0.087$
Data-to-parameter ratio $=16.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Difluoro $\left(\eta^{5}, \eta^{5}\right.$-propane-2,2-diyldicyclopentadienyl)titanium(IV)

In the title compound, $\left[\mathrm{Ti}\left(\mathrm{C}_{13} \mathrm{H}_{14}\right) \mathrm{F}_{2}\right]$, the coordination polyhedron around the Ti atom is a distorted tetrahedron defined by the centroids of the cyclopentadienyl rings and the two F atoms. The Ti-ring centroid $(C g)$ distances are 2.0558 (7) and 2.0567 (8) A. The presence of a short carbon bridge linking the cyclopentadienyl rings constrains the $\mathrm{Cg}-$ $\mathrm{Ti}-C g$ angle to a value of $121.50(3)^{\circ}$.

Comment

Metallocene complexes of general formula $M X_{2} \mathrm{Cp}_{2}(\mathrm{Cp}$ is the cyclopentadienyl ligand, M is an early transition metal, and X is a halide or an alkyl) have attracted considerable attention as a result of their applications as olefin polymerization catalysts (Alt \& Köppl, 2000) and reagents for organic synthesis (Rosenthal et al., 2003), and because of their biological activity (Tacke et al., 2004). The physical and chemical properties of these compounds can be further modified either by changing the X ligand or by the introduction of various substituents into the cyclopentadienyl ligand. Complexes in which the two fivemembered rings are attached to each other via an interannular bridge (e.g. methylene), the so-called ansa-metallocenes, are used for stereospecific polymerization of propene (Shaltout et al., 1995). As a part of a broad investigation of metallocene complexes of early transition metals, the title titanium fluoride ansa-complex, $\mathrm{TiF}_{2}\left[\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right]$, (I), has been prepared and structurally characterized (Fig. 1).

(I)

The titanium-ring centroid ($C g 1$ and $C g 2$, referring to the C1- and C6-containing rings, respectively) distances [Ti1$C g 1=2.0558$ (7) \AA and $\mathrm{Ti} 1-C g 2=2.0567$ (8) \AA] are close to the value $[2.0575$ (14) and 2.0574 (14) \AA; Koch et al., 2000] found for the analogous dichloride complex $\mathrm{TiCl}_{2}\left[\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right]$, (II). The Ti1-F bond lengths in (I), of 1.8565 (9) and 1.8648 (9) \AA, are similar to those in $\mathrm{TiF}_{2}\left[\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{C}_{2}\left(\mathrm{CH}_{3}\right)_{4}\right] \quad[1.8536(13)$ and $1.8553(14) \AA$; Edwards et al., 1995].

The $C g 1-\mathrm{Ti} 1-C g 2$ and $\mathrm{F} 1-\mathrm{Ti} 1-\mathrm{F} 2$ bond angles in (I) are 121.50 (3) and $99.24(4)^{\circ}$, respectively. The relatively small value of the $C g-\mathrm{Ti} 1-C g$ angle in (I) compared with the equivalent angle in titanocene dichloride (131°; Clearfield et al., 1975), is caused by the presence of the short 2,2-propyl-

Received 24 May 2005
Accepted 31 May 2005
Online 10 June 2005

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids (arbitrary spheres for the H atoms), with $\mathrm{Ti}-\mathrm{Cg}$ bonds indicated by dashed lines.
idene bridge between the Cp ligands. The bond angles involving the bridging C atoms in (I) are distorted from their ideal tetrahedral values by the influence of η^{5}-coordination of the Cp rings to the central metal atom (Zachmanoglou et al., 2002). The $\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 6$ and $\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 13$ angles are 97.16 (11) and $110.11(13)^{\circ}$, respectively. The short ansabridge unit in (I) results in a dihedral angle of 65.76 (9) ${ }^{\circ}$ between the mean ring planes. The Cp ring $\mathrm{C}-\mathrm{C}$ bond distances in (I) are normal and no significant ring puckering was observed.

Experimental

Compound (I) was prepared from the chloride derivative (II) (Shaltout et al., 1995) by reaction with $\mathrm{Me}_{3} \mathrm{SnF}$ in toluene. Starting complex (II) ($0.22 \mathrm{~g}, 0.76 \mathrm{mmol}$) was dissolved in dry toluene (60 ml) and freshly sublimed $\mathrm{Me}_{3} \mathrm{SnF}(0.28 \mathrm{~g}, 1.53 \mathrm{mmol})$ was added. The suspension was stirred for 3 h at 353 K until all the $\mathrm{Me}_{3} \mathrm{SnF}$ had been dissolved. The orange-coloured solution was then cooled to room temperature and stirred overnight. Toluene was evaporated in vacuo leaving a yellow solid, which was washed twice with dry hexane $(20 \mathrm{ml})$ to remove $\mathrm{Me}_{3} \mathrm{SnCl}$ and subsequently dried in vacuo [yield 93%, m.p. 520-540 K (decomposition)]. Upon cooling of a saturated chloroform solution to 270 K , orange crystals of (I) suitable for X-ray diffraction measurements crystallized. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, p.p.m.): δ $6.55(s, 4 \mathrm{H}), 5.74(t, 4 \mathrm{H}), 1.97(s, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m. $): \delta$ 128.0, 119.3, 109.8, 38.0, 24.0; IR (KBr disc, cm^{-1}): $3119(w), 3096(m)$, 3086 (m), 2964 (m), 2925 (m), 1274 (m), 1262 (m$), 1101$ (s$), 1044$ (s$)$, 875 (w), 828 (s), 813 (s), 739 (s), 607 (m), 597 (s), 591 (s), 571 (s); Raman (quartz capillary, cm^{-1}): 3118 (m), $3111(\mathrm{~s}), 3096$ (m), 3085 (w), 2984 (m), 2958 (w), 2953 (w), 2929 (m), 1468 (m), 1391 (m), 1276 (w), 1153 (s), 1076 (m), $880(\mathrm{~m}), 816(\mathrm{~m}), 550(\mathrm{~m}), 453(\mathrm{~s}), 428(\mathrm{~m})$, $367(s), 290(s), 240(s), 188(s), 85(s)$.

Crystal data

[Ti $\left.\left(\mathrm{C}_{13} \mathrm{H}_{14}\right) \mathrm{F}_{2}\right]$

$M_{r}=256.14$

Monoclinic, $P 2_{1} / n$
$a=7.9700$ (2) A
$b=14.3740(3) \AA$
$c=9.5750(2) \AA$
$\beta=100.3350(15)^{\circ}$
$V=1079.12(4) \AA^{3}$
$Z=4$
$D_{x}=1.577 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2549
reflections
$\theta=1-27.5^{\circ}$
$\mu=0.79 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Prism, orange
$0.25 \times 0.25 \times 0.14 \mathrm{~mm}$
Data collection
Nonius KappaCCD area-detector diffractometer
φ and ω scans
Absorption correction: none
17813 measured reflections
2478 independent reflections

$$
\begin{aligned}
& 2163 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.030 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-18 \rightarrow 18 \\
& l=-12 \rightarrow 12 \\
& \\
& \\
& \begin{array}{c}
\text { }=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0526 P)^{2}\right. \\
\quad+0.5257 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.35 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.43 \mathrm{e} \AA^{-3}
\end{array}
\end{aligned}
$$

Refinement

Refinement on F^{2}

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.
Cg 1 is the centroid of the cyclopentadienyl ring C1-C5. Cg2 is the centroid of the cyclopentadienyl ring $\mathrm{C} 6-\mathrm{C} 10 . P_{\mathrm{r}} 1$ is the ring plane defined by atoms $\mathrm{C} 1-$ C5. P_{r}^{2} is the ring plane defined by atoms C6-C10.

Ti1-Cg1	$2.0558(7)$	$C g 1-\mathrm{Ti} 1-C g 2$	$121.50(3)$
Ti1-Cg2	$2.0567(8)$	$\mathrm{F} 1-\mathrm{Ti} 1-\mathrm{F} 2$	$99.24(4)$
Ti1-F1	$1.8565(10)$	$\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 6$	$97.15(12)$
$\mathrm{Ti} 1-\mathrm{F} 2$	$1.8648(9)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 13$	$110.11(13)$
$P_{\mathrm{r}} 1-\mathrm{C} 1-\mathrm{C} 11$	$15.14(10)$	$P_{\mathrm{r}} 2-\mathrm{C} 6-\mathrm{C} 11$	$16.31(10)$
$P_{\mathrm{r}} 1-\mathrm{Cg} 1-\mathrm{Ti} 1$	$85.99(7)$	$P_{\mathrm{r}} 2-C g 2-\mathrm{Ti} 1$	$86.74(7)$
$P_{\mathrm{r}} 1-P_{\mathrm{r}} 2$	$65.76(9)$		

All H atoms were positioned geometrically and refined as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for cyclopentadienyl H atoms, and $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms.

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski \& Minor, 1997); cell refinement: COLLECT and DENZO; data reduction: $C O L L E C T$ and $D E N Z O$; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank the Ministry of Education, Youth and Sports of the Czech Republic for financial support of this work within the framework of research project VZ 0021627501. Access to the Cambridge Structural Database was sponsored by the Grant Agency of the Czech Republic (No. 203/02/0436).

References

Alt, H. G. \& Köppl, A. (2000). Chem. Rev. 100, 1205-1221.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435-436.

metal-organic papers

Clearfield, A., Warner, D. K., Saldarriaga-Molina, C. H., Ropal, R. \& Bernal, I. (1975). Can. J. Chem. 53, 1622-1629.

Edwards, A. J., Burke, N. J., Dobson, C. M., Prout, K. \& Heyes, S. J. (1995). J. Am. Chem. Soc. 117, 4637-4653.
Hooft, R. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Koch, T., Blaurock, S., Somoza, F. B. Jr, Voigt, A., Kirmse, R. \& Hey-Hawkins, E. (2000). Organometallics, 19, 2556-2563.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Rosenthal, U., Arndt, P., Baumann, W., Burlakov, V. V. \& Spannenberg, A. (2003). J. Organomet. Chem. 670, 84-96.

Shaltout, R. M., Corey, J. Y. \& Rath, N. P. (1995). J. Organomet. Chem. 503, 205-212.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Tacke, M., Cuffe, L. P., Gallahanger, W. M., Lou, Y., Mendoza, O., MüllerBunz, H., Rehmann, F.-J. K. \& Sweeny, N. (2004). J. Organomet. Chem. 689, 2242-2249.
Zachmanoglou, C. E., Docrat, A., Bridgewater, B. M., Parkin, G., Brandow, C. G., Bercaw, J. E., Jardine, C. N., Lyall, M., Green, J. C. \& Keister, J. B. (2002). J. Am. Chem. Soc. 124, 9525-9546.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

